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H I G H L I G H T S

• Three-predictor model showed external validity for spinal metastasis surgery.
• AUC was 0.78 for 90-day survival and 0.68 for complications.
• Model reached 70% accuracy and 85% specificity for frailty detection.
• Frailty-based tool supports urgent surgical decisions at bedside.
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A B S T R A C T

Background context: Surgical decision-making in patients with spinal metastases remains complex due to the need 
to balance potential surgical benefits with limited survival and common frailty. Predictive models can assist in 
this process, but their clinical utility is often limited by complexity and lack of validation.
Purpose: To externally validate a simple three-predictor frailty model for 90-day survival and complications, and 
to compare its performance with other commonly used tools.
Study design/setting: Prospective external validation study conducted at a single tertiary cancer center.
Patient sample: A consecutive cohort of 126 patients who underwent open posterior surgery with instrumentation 
for spinal metastases from solid tumors between 2018 and 2024.
Outcome measures: Primary outcomes were 90-day survival and the occurrence of postoperative complications. 
Secondary outcomes included 30-day, 180-day and overall survival. Model performance was evaluated through 
discrimination (AUC), risk stratification, accuracy for surgical indication and calibration.
Methods: The Anzuategui model (three predictors: tumor growth rate, comorbidities, and lymphocyte count) was 
applied preoperatively, along with four other three-predictor models (Tomita, Modified Bauer, Van der Linden, 
and Sioutos). Discrimination was assessed using ROC curves. Risk stratification was evaluated using predefined 
low-, moderate-, and high-risk categories, analyzed through Kaplan–Meier curves and complication rates. Model 
accuracy for surgical indication was calculated using a 90-day survival threshold as the reference. Calibration for 
both 90-day survival and postoperative complications was performed by comparing category-specific predicted 
probabilities derived from the development cohort with observed event rates in the validation cohort.
Results: The Anzuategui model demonstrated predictive performance for the primary outcomes comparable to the 
other models under evaluation. It achieved an AUC of 0.78 (95% CI: 0.70–0.85) for 90-day survival and 0.68 
(95% CI: 0.59–0.76) for postoperative complications. Risk stratification showed clear separation between sur
vival curves across the three predefined categories. Accuracy for predicting appropriate surgical indication was 
70% (95% CI: 61–78), with a sensitivity of 64% and specificity of 85%. Tomita and Modified Bauer models 
showed comparable accuracy (75% and 74%, respectively) but lower specificity. Calibration indicated over
estimation of 90-day mortality (intercept –1.75; slope 2.05) and modest miscalibration for postoperative com
plications (intercept –0.40; slope 0.67).
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Conclusions: The Anzuategui model demonstrated acceptable external performance, with greater validity for 
predicting 90-day survival than for postoperative complications. Its simplicity and frailty-centered structure 
make it a practical bedside tool, particularly in urgent or resource-limited settings. Integrating this approach with 
established prognostic models may support more balanced decision-making across diverse clinical scenarios.

1. Introduction

Surgical decision-making in patients with spinal metastases is 
particularly challenging. The potential benefit of surgery often conflicts 
with the patient’s frail health and limited life expectancy [1]. This raises 
the critical question: which patients should undergo surgery [2]?

Several multivariable predictive models have been developed to es
timate outcomes following surgery for spinal metastases and to support 
clinical decision-making [3,4]. These models have proven useful by of
fering prognostic classifications across multiple risk categories—such as 
low, moderate, and high risk. Others provide binary classifications, 
supporting dichotomous decisions such as whether or not to operate. 
More advanced models yield probabilistic predictions, offering numer
ical estimates ranging from 0 % to 100 % for a given outcome [5].

A particularly useful outcome in this context is 90-day survival, 
which is often considered a key threshold in surgical decision-making 
[6,7]. Additional models have been proposed to predict survival at 
other time points (e.g., 30 [8,9], 45 [10], 180 days [11,12], and 1 year 
[13]), as well as to estimate the risk of complications such as surgical site 
infection [14,15], massive bleeding [16], neurological deterioration 
[17], quality of life [18], and overall morbidity [19,20].

Simplified predictive models rely on up to three clinical predictors 
capable of anticipating favorable or unfavorable outcomes. Among the 
most widely known are the Tomita [21] and Modified Bauer [22,23] 
scores. Their ease of memorization makes them especially useful in 
bedside evaluations and urgent hospital settings, such as in cases of 
metastatic spinal cord compression.

The pursuit of higher accuracy has led to the development of ma
chine learning algorithms that incorporate dozens of predictors, 
including advanced imaging, non-routine laboratory tests, and diverse 
clinical features [24]. While these approaches have increased discrimi
native performance to approximately 75–85 %, they introduce a degree 
of complexity that may hinder their clinical adoption—particularly 
when they delay decision-making until all tests are completed and 
interpreted [25].

In the era of artificial intelligence, the practicality of three-predictor 
models for surgical decision-making in spinal metastases remains un
certain [26]. This study aims to externally validate a three-predictor 
frailty model proposed by Anzuategui et al. in 2019 [27], and to 
compare its performance with other widely used prognostic tools.

The relevance of this study lies in its potential to simplify and 
enhance surgical decision-making by providing a practical, user-friendly 
tool for managing patients with spinal metastases, with a specific focus 
on frailty assessment.

2. Materials and methods

2.1. Study design

This study followed the methodological guidelines outlined in the 
TRIPOD Statement [5], (Transparent Reporting of a Multivariable Pre
diction Model for Individual Prognosis or Diagnosis). The completed 
TRIPOD checklist is provided in the Supplementary Material S1. All 
procedures complied with ethical standards for human research and 
were approved by the local Institutional Review Board.

The target population consisted of a prospective cohort of consecu
tive patients treated at a single tertiary cancer center who underwent 
surgery for spinal metastases between 2018 and 2024.

2.2. Study population

All consecutive patients undergoing open surgical treatment for 
spinal metastases from solid tumors were prospectively enrolled. To 
ensure clinical and biological homogeneity, patients with hematologic 
malignancies (e.g., multiple myeloma, lymphoma, leukemia) were 
excluded. This decision was prespecified, given the distinct pathophys
iology, metastatic patterns, and surgical indications of hematologic 
neoplasms compared with solid tumors.

Exclusion criteria were applied to preserve cohort homogeneity and 
to align with the study’s primary endpoint. Patients with postoperative 
follow-up shorter than 90 days were excluded (n = 2), as 90-day survival 
represents the principal outcome of interest and a clinically meaningful 
benchmark in this setting. Five privately treated patients were also 
excluded because, unlike the standardized and integrated public 
healthcare system of our institution, private-system care is frequently 
fragmented across multiple facilities and oncology protocols, intro
ducing heterogeneity in both surgical and nonsurgical aspects of care.

Two additional cases were excluded because no spinal fixation/sta
bilization was performed—one due to intraoperative complications 
leading to early termination of the procedure and another involving a 
predominantly sacral lesion for which stabilization was not feasible. 
Anterior-only approaches were prespecified as an exclusion criteria, 
although none occurred during the study period.

Because the cohort comprises all surgically treated patients over the 
study period, no selection was made regarding tumor histology, meta
static burden, comorbidities, or functional status. Therefore, the het
erogeneity observed in the sample reflects the real-world case mix of a 
tertiary cancer center and represents the population for whom predic
tive models for postoperative outcomes are intended in clinical practice.

2.3. Data collection

Data were collected prospectively as clinical events occurred, 
including surgery, perioperative care, outpatient follow-up, and hospital 
readmissions. All prediction models were applied preoperatively by an 
investigator blinded to postoperative outcomes.

The primary outcomes were 90-day survival and the occurrence of 
postoperative complications. Secondary outcomes included 30-day and 
180-day survival and overall survival. Survivors were followed until the 
last available clinical assessment or until death or censoring.

Postoperative complications occurring within 30 days of surgery 
were classified as systemic or local; infectious or non-infectious; respi
ratory or non-respiratory; and graded according to the classification 
proposed by Rampersaud et al. [28]. All collected data were reviewed by 
the principal investigator at the end of the study to ensure consistency 
and accuracy.

2.4. Comorbidity assessment

Comorbidities were identified following the operational criteria used 
in the original development study, based on Charlson [29] and Elix
hauser [30] domains. The principal investigator personally evaluated all 
patients and verified each condition during the preoperative assessment. 
A comorbidity was recorded when supported by at least one of the 
following: (i) documented prior diagnosis, particularly when chronic 
pharmacologic therapy was in place; (ii) inpatient laboratory abnor
malities consistent with the condition; (iii) assessment by the hospitalist 
team; or (iv) confirmatory findings from echocardiography, 
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electrocardiography, spirometry, or other ancillary tests when available. 
The comorbidities systematically assessed were: diabetes mellitus, 
chronic pulmonary disease, prior myocardial infarction, congestive 
heart failure, cardiac arrhythmia, pulmonary circulation disorder, pe
ripheral vascular disease, cerebrovascular disease, dementia, renal 
insufficiency, hepatic insufficiency, connective tissue disease, coagul
opathy, prior paralysis, peptic ulcer disease, and acquired immunode
ficiency syndrome.

In urgent or emergent cases, confirmatory testing, especially 
spirometry for chronic pulmonary disease, was often not feasible; 
therefore, diagnoses could rely on clinical history, imaging features, and 
treating-team impressions. This reflects routine real-world practice in 
oncologic spine surgery. Inter-rater reliability was not formally assessed 
because comorbidity classification was performed by a single experi
enced evaluator.

2.5. Perioperative management

The predictive models were not used as the sole criteria for surgical 
decision-making. Preoperative evaluation included restaging with 
computed tomography scans of the head, chest, abdomen, and pelvis, as 
well as laboratory testing performed within three days prior to surgery. 
Surgical risk assessment followed institutional protocols and involved 
cardiology and anesthesiology consultations. In complex clinical sce
narios, the hospitalist service was engaged to optimize the management 
of comorbidities.

A multidisciplinary team routinely provided nutritional, physical 
therapy, and nursing support. Psychological and social work services 
were offered selectively, based on individual patient needs. Post
operative care typically included intensive monitoring, wound man
agement, and early rehabilitation.

2.6. Surgical technique

The standard procedure involved direct neural decompression 
combined with pedicle screw fixation for spinal stabilization, as 
described by Patchell et al. [31]. Patients were positioned prone for a 

posterior-only approach. A midline incision centered over the affected 
vertebra was made, followed by posterior element exposure. In thoracic 
lesions, the standard construct included fixation of two levels above and 
two below the lesion. Most decompressions were performed using a 
partial transpedicular corpectomy combined with multilevel lam
inectomy (two or three levels). Sutures were removed after three weeks, 
and all patients received adjuvant radiotherapy.

2.7. Three-predictor models

For external validation, the Anzuategui prediction model was 
compared with other clinical tools of similar structure, each limited to 
three predictors, as listed in Table 1. The model was operationalized 
using three risk categories (Low, Moderate, High), rather than the four 
originally defined in the development cohort. This intentional simplifi
cation aimed to improve clinical usability while preserving the con
ceptual framework of the original stratification.

Because all prognostic models were applied to the same patient 
cohort, no between-group baseline differences existed, and adjustment 
for histologic distribution or other clinical characteristics was 
unnecessary.

The Anzuategui model was compared with widely accepted bench
mark models proposed by Tomita et al. [21], Bauer et al. [22] (as 
modified by Leithner et al. [23]), Van der Linden et al. [32] and Sioutos 
et al. [33], using the following performance metrics: 

1. Discriminative ability: assessed using ROC curve analysis and the 
area under the curve (AUC);

2. Prognostic stratification: risk groups (low, moderate, high) were 
defined, and Kaplan-Meier survival curves and complication rates 
per group were analyzed;

3. Surgical indication accuracy: appropriate surgical indication (i.e., 
“true” indication) was defined as a predicted surgery with actual 
survival exceeding 90 days. This allowed for construction of a 
confusion matrix including: 
• True positives (predicted for surgery and survived > 90 days),

Table 1 
Summary of prognostic models evaluated in this study.

Model Predictors Scoring system Risk classes Surgical 
recommendation

Anzuategui Tumor growth rate 
Comorbidities 
Peripheral blood 
lymphocyte count

1 point if non-slow tumor progression, significant comorbidities, and lymphocyte count 
< 1 × 103/μL

Low: 0 points 
Moderate: 1 
point 
High: 2–3 
points

0 or 1 point

Tomita Tumor growth rate 
Visceral metastases 
Bone metastases

4 points for rapid, 2 for moderate, and 1 for slow progression; 4 points for untreatable 
visceral metastasis, 2 if treatable; 2 points for multiple bone metastases, 1 if solitary

Low: 2–3 
points 
Moderate: 4–7 
points 
High: 8–10 
points

2 to 7 points

Modified 
Bauer

Histologic type 
Visceral metastases 
Bone metastases

1 point for non-pulmonary tumor; 1 point if originated from breast, kidney, lymphoma, or 
multiple myeloma; 1 point if no visceral metastasis; 1 point if bone metastasis is solitary

Low: 3–4 
points 
Moderate: 2 
points 
High: 0–1 point

2 to 4 points

Van der 
Linden

Histologic type 
Visceral metastases 
Karnofsky Performance 
Status (KPS)

3 points for breast tumor, 2 for prostate, 1 for lung, 0 for others; 1 point if visceral 
metastasis is present; 2 points if KPS 80–100, 1 if 50–70, 0 if 20–40

Low: 6 points 
Moderate: 4–5 
points 
High: 0–3 
points

4 to 6 points

Sioutos Histologic type 
Vertebral metastases 
Preoperative muscle 
strength

1 point if tumor originated from lung or colon, multiple vertebral metastases, and muscle 
strength grade 0 to 3

Low: 0 point 
Moderate: 1 
point 
High: 2–3 
points

0 or 1 point

Notes: Risk classes were adapted to three categories for standardization. Abbreviations: KPS, Karnofsky Performance Status.
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• True negatives (predicted for conservative treatment and died ≤
90 days),

• False positives (predicted for surgery but died ≤ 90 days),
• False negatives (predicted for conservative treatment but survived 
> 90 days).

A 90-day postoperative survival threshold was used to define 
appropriate surgical indication. This interval represents a clinically 
meaningful minimum period during which patients are expected to 
derive benefit from major spine surgery, including pain relief, me
chanical stabilization, and the opportunity to receive adjuvant oncologic 
treatments. Survival below this threshold is generally associated with 
limited utility of extensive surgical intervention; thus, the 90-day cutoff 
provides a pragmatic and widely used benchmark for decision-oriented 
analyses in metastatic spine disease.

2.8. Statistical analysis

Statistical tests were selected based on data distribution and study 
objectives: Fisher's exact test, Student’s t-test, McNemar’s test, chi- 
square test, and the Mann-Whitney U test were applied as appropriate. 
Cochran–Armitage trend test was used to test for risk stratification ef
fects on complication incidence. Continuous variables were dichoto
mized when relevant.

The Kaplan–Meier method was used to estimate survival times and 
generate survival curves.

To compare the discriminative performance of the prognostic 
models, pairwise differences between AUC values were assessed using 
the DeLong test for correlated ROC curves.

Missing data occurred only in laboratory variables that were not used 
as predictors in any of the prognostic models under evaluation. Because 
C-reactive protein, International Normalized Ratio (INR), and serum 
albumin served exclusively for descriptive characterization of the 
cohort, no imputation procedure was performed. A complete-case 
approach was used for all variables required by the prediction models, 
all of which had complete data. Therefore, missingness did not affect 
model calculation, discrimination, risk assessment or calibration.

All analyses adopted a 95 % confidence interval. Statistical analyses 
and graph generation were performed using R (version 4.4.3) and 
MedCalc (version 23.2.8, 64-bit).

2.9. Calibration analysis

For calibration analyses, 90-day survival was transformed to its 
complementary outcome (90-day mortality) so that both primary end
points—mortality and postoperative complications—could be evaluated 
uniformly as adverse events. This allowed the calibration intercept, 
slope, and graphical patterns to be interpreted in the same direction 
across outcomes.

Calibration was assessed separately for 90-day mortality and post
operative complications using the model’s predefined three-category 
structure (Low, Moderate, High Risk). Each patient in the validation 
cohort was assigned the category-specific predicted probability derived 
from the development dataset.

Logistic recalibration was performed by regressing each observed 
outcome on the logit of its assigned predicted probability. The resulting 
calibration intercept (ideal value: 0) reflects overall under- or over
estimation of risk, and the calibration slope (ideal value: 1) represents 
the degree of risk separation relative to the development cohort. Overall 
accuracy was quantified with the Brier score, calculated using the 
original category-specific predicted probabilities.

Graphical calibration was displayed by plotting, for each risk group, 
predicted probabilities against observed event rates, with the 45◦ line 
representing perfect agreement.

2.10. Open science and transparency

An anonymized patient-level dataset is available as Supplementary 
Table S2. Although no protocol was preregistered, raw data and full 
statistical outputs are available from the corresponding author upon 
reasonable request.

This investigator-initiated study received no external funding, and 
the authors report no relevant conflicts of interest. No patients were 
involved in the design, conduct, or reporting of this research.

3. Results

3.1. Sample: composition, outcomes, and characteristics

The final sample of this study comprised 126 unique and consecutive 
patients (Fig. 1). The mean duration of surgery was 147 min, and the 
mean estimated blood loss was 456 mL. Table 2 compares the original 
development cohort of the Anzuategui model with the present temporal 
external validation cohort. The clinical characteristics, predictive vari
ables, and outcomes of the validation cohort are detailed in Table 3.

The most common histological type was breast cancer (n = 37), 
followed by prostate (n = 21), lung (n = 11), colorectal (n = 10), renal 
(n = 10), other solid tumors (n = 10), uterine (n = 8), pharyngeal/ 
laryngeal (n = 5), melanoma (n = 3), sarcoma (n = 3), unknown primary 
(n = 3), esophageal (n = 2), bladder (n = 2), and thyroid (n = 1) cancers.

The median overall survival was estimated at 228 days (95 % CI: 156 
to 327), and the mean overall survival was 575 days (95 % CI: 443 to 
707). A total of 21 % of the sample (n = 26) were censored.

Postoperative complications occurred in 41 patients (32 %), and 
eight of these developed a second complication, all of which were sys
temic. In total, 49 adverse events were recorded. These are categorized 
and described in Table 4.

3.2. Comparative model performance

The distribution of patients according to risk categories defined by 
the predictive models was as follows: 

• Anzuategui: 17 % (n = 22) low risk, 34 % (n = 43) moderate risk, 
48 % (n = 61) high risk;

• Tomita: 31 % (n = 39) low risk, 42 % (n = 53) moderate risk, 27 % 
(n = 34) high risk;

Fig. 1. Flowchart of patient selection for the prospective study cohort, detailing 
inclusion and exclusion criteria and resulting in 126 unique and consecu
tive surgeries.
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• Bauer (modified): 25 % (n = 32) low risk, 44 % (n = 55) moderate 
risk, 31 % (n = 39) high risk;

• Van der Linden: 9 % (n = 12) low risk, 27 % (n = 34) moderate risk, 
63 % (n = 80) high risk;

• Sioutos: 8 % (n = 10) low risk, 51 % (n = 64) moderate risk, 41 % (n 
= 52) high risk.

The predictive performance of all five models in relation to post
operative survival and complications is illustrated in Figs. 2–9 and 
summarized in Tables 5 and 6.

3.3. Calibration results

Calibration analysis for 90-day survival demonstrated that the model 
systematically overestimated short-term mortality in the validation 
cohort. Logistic recalibration yielded a calibration intercept of − 1.75 
(95 % CI − 3.01 to − 1.23), indicating lower-than-expected event rates, 
and a calibration slope of 2.05 (95 % CI 1.31 to 3.57), reflecting greater 
risk separation in the development cohort compared with the external 
sample. The Brier score for 90-day mortality prediction was 0.225.

For postoperative complications, the calibration pattern was more 
modest. The calibration intercept was − 0.40 (95 % CI − 0.84 to 0.04), 
suggesting slight overestimation of complication risk, while the cali
bration slope was 0.67 (95 % CI 0.16 to 1.27), indicating attenuated 
discrimination across risk categories in the validation cohort. The Brier 
score for complications was 0.213.

Graphical assessment of calibration for both primary outcomes was 
presented in Fig. 10.

3.4. Missing data

C-reactive protein values were missing in 7 % of patients, INR in 5 %, 
and serum albumin in 9 %. None of the predictor variables required by 
the prognostic models had missing data.

4. Discussion

The present study provides prospective external evidence supporting 
the clinical usefulness of the Anzuategui model after surgery for spinal 
metastases. Although its discriminatory ability for 90-day survival (AUC 
78 %) was comparable to that of traditional prognostic tools, including 
the Tomita, Modified Bauer, Van der Linden, and Sioutos models, these 
findings should be interpreted as confirmation of acceptable rather than 
superior or strong performance. Similar effect sizes have been reported 
in prior comparative studies, reinforcing that most three-predictor 
frameworks converge toward moderate discrimination for early post
operative survival [4,11,24].

Regarding the prediction of postoperative complications, the model 
demonstrated limited predictive accuracy (AUC 68 %), similar to the 
other four evaluated models, which showed acceptable yet suboptimal 
performance, with AUC values ranging from 60 to 70 %. These findings 
are consistent with prior literature indicating that even tools specifically 
developed to assess frailty or predict postoperative complications 
exhibit limited discriminative ability [8,14]. Ramos et al. [34] similarly 

Table 2 
Characteristics, Predictors, and Outcomes of the Development Cohort (Retro
spective Analysis, n = 205) and the Temporal External Validation Cohort 
(Prospective Analysis, n = 126) for the Anzuategui Predictive Model.

Variable Development 
Cohortn (%) / 
median (IQR)

External validation 
Cohortn (%) / 
Median (IQR)

p-value

Clinical 
Characteristics

​ ​ ​

Age 59 (51–69) 58 (48–68) 0.50
Male sex 114 (55 %) 58 (46 %) 0.11
Surgical approach ​ ​ ​
Cervical or 

Cervicothoracic
11 (5 %) 8 (6 %) 0.71

Thoracic 70 (34 %) 53 (42 %) 0.15
Thoracolumbar 71 (35 %) 49 (39 %) 0.49
Lumbar or 

Lumbosacral
49 (24 %) 16 (16 %) 0.08

Multiple 4 (2 %) 0 (0 %) 0.11
Primary tumor 

histology
​ ​ ​

Slow-growing 124 (60 %) 53 (42 %) 0.001
Intermediate 49 (24 %) 25 (20 %) 0.39
Rapid 32 (16 %) 48 (38 %) <0.0001
Predictors ​ ​ ​
One or more 

comorbidities
65 (32 %) 50 (40 %) 0.17

Non-slow 
progression 
tumor

81 (40 %) 75 (59 %) <0.0001

Lymphocytes < 1 
(x103 / μL)

51 (25 %) 59 (47 %) <0.0001

Outcomes ​ ​ ​
Survival > 90 days 117 (57 %) 93 (74 %) 0.002
One or more 

complications
64 (31 %) 41 (32 %) 0.92

Notes: The development cohort included patients with hematologic malig
nancies, which explains the higher proportion of slow-growing tumors. The 
development cohort also included grade III–IV complications according to 
Rampersaud et al., whereas the external validation cohort included grade II–IV 
complications. Abbreviations: IQR, interquartile range.

Table 3 
Other characteristics, predictors, and outcomes of the temporal external vali
dation Cohort, N = 126.

Variable n (%) / Median (IQR)

Age ≥ 70 years 24 (19 %)
Age ≥ 65 years 47 (37 %)
Comorbidities ​
Diabetes 24 (19 %)
Chronic pulmonary disease 15 (12 %)
AIDS 4 (3 %)
Previous paralysis 4 (3 %)
Renal failure 4 (3 %)
ASIA impairment (A to D) 89 (71 %)
ECOG performance status ​
0–2 92 (73 %)
3–4 34 (27 %)
Known visceral metastases ​
Any site 69 (55 %)
Lung 58 (46 %)
Liver 28 (22 %)
Brain 13 (10 %)
Known lymph node metastases 74 (59 %)
Known vertebral metastases ​
Solitary or isolated 20 (16 %)
Three or more 97 (77 %)
Prior systemic therapy 89 (71 %)
Hemoglobin (g/dL) 11.9 (11–13.1)
Platelets (×103/µL) 270 (203–339)
White blood cells (×103/µL) 10.5 (7.1–13.3)
Lymphocytes (×103/µL) 1.10 (0.67–1.76)
Neutrophils (×103/µL) 8.46 (5.24–11.73)
Neutrophil-to-lymphocyte ratio 7.82 (3.51–14.71)
Platelet-to-lymphocyte ratio 262 (150–399)
Albumin (g/dL) 3.5 (3.2–3.9)
Creatinine (mg/dL) 0.7 (0.5–0.9)
INR 1.02 (1.00–1.12)
C-reactive protein (mg/dL) 2.40 (1.50–4.70)
Overall survival ​
30 days 115 (91 %)
90 days 93 (74 %)
180 days 69 (55 %)

Abbreviations.
IQR, interquartile range; AIDS, acquired immunodeficiency syndrome; ASIA, 
American Spinal Injury Association scale; ECOG, Eastern Cooperative Oncology 
Group performance status; INR, international normalized ratio.
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reported this limitation in a comparative validation of the New England 
Spinal Metastasis Score (NESMS) proposed by Ghori et al. [8,35], the 
Metastatic Spinal Tumor Frailty Index (MSTFI) proposed by Ramos et al. 
[1], and the Anzuategui models, underscoring the inherent complexity 
of predicting adverse outcomes in oncologic patients undergoing 
surgery.

In light of these strengths and limitations, the validated version of 

the Anzuategui model presented here in Table 7, accompanied by a 
streamlined decision-support structure, should be viewed as a practical 
aid for early perioperative risk estimation rather than a comprehensive 
solution to surgical prognostication. Its simplicity and frailty-centered 
approach may facilitate bedside applicability, but its use should be in
tegrated with clinical judgment and complementary prognostic models, 
especially when decisions hinge on estimated morbidity risk.

A noteworthy and potentially novel finding of this study was the 
evaluation of model accuracy for surgical indication, using a tailored 
methodology. Considering postoperative survival beyond 90 days as a 
marker of appropriate surgical indication, the Anzuategui, Tomita, and 
Modified Bauer models each achieved approximately 70 % accuracy 
(Table 6). To our knowledge, no comparable analyses have been 

Table 4 
Postoperative complications.

Complication Type n ¼ 49

Systemic 42 (33 %)
Pneumonia 9 (7.1 %)
Non-infectious respiratory failure 4 (3.2 %)
Urinary tract infection 4 (3.2 %)
Infected pressure ulcer 3 (2.4 %)
Sepsis of unknown origin 3 (2.4 %)
Seizure 3 (2.4 %)
Acute abdomen 2 (1.6 %)
Renal failure 2 (1.6 %)
Venous thrombosis 2 (1.6 %)
Death from unknown cause 2 (1.6 %)
Other 8 (6.3 %)
Local 7 (5.5 %)
Wound infection 3 (2.4 %)
Screw loosening 1 (0.8 %)
Disease progression with paralysis 1 (0.8 %)
Wound dehiscence 1 (0.8 %)
Excessive bleeding 1 (0.8 %)
Infectious 22 (17 %)
Non-infectious 27 (21 %)
Respiratory 13 (10 %)
Non-respiratory 36 (28 %)
Severity grade ​
II 9 (7.1 %)
III 21 (17 %)
IV 19 (15 %)

Notes: Complications were categorized as systemic or local and further 
subclassified as infectious or non-infectious, respiratory or non- 
respiratory, and by severity grade according to the Rampersaud 
classification.

Fig. 2. Discriminative performance of predictive models for 90-day post
operative survival based on ROC curve analysis. Abbreviations: AUC, area 
under the curve; CI, confidence interval.

Fig. 3. Discriminative performance of predictive models for postoperative 
complication risk based on ROC curve analysis. Abbreviations: AUC, area under 
the curve; CI, confidence interval.

Fig. 4. Kaplan–Meier survival curve up to 180 days according to the risk cat
egories of the Anzuategui model. Shaded areas represent 95 % confidence in
tervals. The table below displays the number of patients at risk over time. P 
< 0.0001.
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previously reported in the medical literature.
From a qualitative standpoint, among the three models with good 

accuracy (>70 %) for surgical decision-making, Tomita and Modified 
Bauer showed high sensitivity (>80 %), making them more effective in 
identifying surgical candidates. In contrast, the Anzuategui model, 
designed to detect patient frailty, demonstrated superior specificity 
(>85 %), making it particularly useful for identifying patients less likely 
to benefit from surgery. This divergence allows institutions to adopt a 
model aligned with their clinical philosophy—more conservative 
(emphasizing specificity) or more interventional (emphasizing 
sensitivity).

The calibration analysis demonstrated heterogeneous performance 
across outcomes and cohorts. For 90-day survival, the model systemat
ically underestimated survival in the validation cohort and showed 
greater separation between risk strata in the development cohort. A key 
contributor to this discrepancy is the disproportionate representation of 
high-risk patients in the validation sample. This occurred, in part, 

because hematologic malignancies, typically associated with more 
favorable prognosis, were intentionally excluded from the validation 
cohort, shifting the case mix toward biologically more aggressive 
tumors.

Despite this higher-risk distribution, the validation cohort paradox
ically exhibited superior 90-day survival. This pattern highlights 
meaningful contextual differences between cohorts, potentially driven 
by temporal improvements in oncologic therapies, evolving periopera
tive practice, shifts in surgical indications, and more refined selection of 
operative candidates. These observations align with broader longitudi
nal trends in our institution, which are being examined in a separate 
study. Such structural changes may alter baseline risk distributions and 
limit the transportability of models developed in earlier clinical eras.

A similar pattern was observed for postoperative complications, 
although the magnitude of miscalibration was smaller. The model 
modestly overestimated complication risk and demonstrated attenuated 
risk separation in the validation cohort. Interpretation of these findings 

Fig. 5. Kaplan–Meier survival curve up to 180 days according to the risk cat
egories of the Tomita model. Shaded areas represent 95 % confidence intervals. 
The table below displays the number of patients at risk over time. P < 0.0001.

Fig. 6. Kaplan–Meier survival curve up to 180 days according to the risk cat
egories of the modified Bauer model. Shaded areas represent 95 % confidence 
intervals. The table below displays the number of patients at risk over time. P 
< 0.0001.

Fig. 7. Kaplan–Meier survival curve up to 180 days according to the risk cat
egories of the Van der Linden model. Shaded areas represent 95 % confidence 
intervals. The table below displays the number of patients at risk over time. P 
< 0.0001.

Fig. 8. Kaplan–Meier survival curve up to 180 days according to the risk cat
egories of the Sioutos model. Shaded areas represent 95 % confidence intervals. 
The table below displays the number of patients at risk over time. P = 0.05.
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requires particular caution because the definitions of complications 
differed between cohorts: in the validation sample, grade 2 events 

according to Rampersaud were also captured, thereby increasing the 
recorded incidence, whereas the development cohort, retrospective by 
design, was subject to expected underreporting of events. These meth
odological differences alone could narrow apparent risk gradients or 
create the impression of overestimation.

Moreover, the same contextual factors that may explain improved 
90-day survival—such as advances in oncologic care, evolving periop
erative practices, and refined surgical selection—could also plausibly 
reduce the relative incidence of complications over time. Whether these 
improvements occurred to a meaningful degree cannot be fully deter
mined here, given the differences in complication ascertainment across 
cohorts. Collectively, these considerations highlight the inherent chal
lenges of calibrating complication risk and underscore the need for 
cautious interpretation of these results.

4.1. Clinical applicability of three-predictor models

With at least 10 validated and widely recognized therapeutic pre
diction models currently available for spinal metastases [36], selecting 
the most appropriate tool remains a frequent challenge for spine sur
geons. In an era dominated by increasingly sophisticated machine 
learning–based tools [3,37], the question arises: do traditional models 
relying on only three variables still hold clinical relevance [38]?

It is important to recognize that the ultimate decision to undergo 
surgery lies with the patient. Subjective, ethical, and existential factors 
frequently influence this difficult choice, as the final goal of treatment is 
to improve and preserve independence and acceptable health-related 
quality of life [39]. Even highly accurate risk estimates produced by 
complex algorithms may fail to capture the personal values and prior
ities that shape how patients weigh the risks and potential benefits of 
surgery—often in the context of a progressive or terminal illness. In this 
setting, simpler models that classify risk into intuitive categories (low, 
moderate, high) may be more effective in facilitating communication 
and supporting shared decision-making.

By selecting a model that includes three out of the 20 currently 
described predictors [12], the clinician focuses on a specific biological 
or clinical dimension of the patient. We propose that predictors be 
grouped into three distinct domains: (1) expected oncologic progression, 
(2) functional status, and (3) patient frailty. The combination of pre
dictors used in each model thus defines its specific clinical perspective.

The Tomita and Modified Bauer models are examples of tools that 
focus exclusively on oncologic progression, incorporating tumor his
tology and the extent of metastatic disease. In contrast, more compre
hensive traditional models such as the modified Katagiri [11] include 
predictors from all three proposed domains, while Van der Linden and 
Sioutos incorporate variables related to both oncologic progression and 
functional status.

Models that incorporate functional performance scales—such as 
Eastern Cooperative Oncology Group (ECOG), Karnofsky, Frankel, or 

Fig. 9. Incidence of postoperative complications according to the risk categories of predictive models. P-value calculated using the Cochran–Armitage trend test.

Table 5 
Discriminative ability according to the area under the curve.

Predictive 
model

30-day 
survival 
AUC(CI)/p

90-day 
survival 
AUC(CI)/p

180-day 
survival 
AUC(CI)/p

Complications 
AUC(CI)/p

Anzuategui 0.72 
(0.63–0.80) 
Ref.

0.78 
(0.70–0.85) 
Ref.

0.73 
(0.64–0.81) 
Ref.

0.68(0.59–0.76) 
Ref.

Tomita 0.76 
(0.68–0.83) 
0.43

0.81 
(0.73–0.87) 
0.49

0.81 
(0.74–0.88) 
0.04

0.70(0.61–0.78) 
0.67

Bauer 
(mod.)

0.73 
(0.65–0.81) 
0.78

0.75 
(0.67–0.83) 
0.63

0.74 
(0.66–0.82) 
0.83

0.70(0.62–0.78) 
0.66

Linden 0.66 
(0.58–0.75) 
0.46

0.72 
(0.64–0.80) 
0.26

0.73 
(0.64–0.80) 
0.96

0.68(0.59–0.76) 
0.99

Sioutos 0.60 
(0.51–0.69) 
0.24

0.60 
(0.51–0.69) 
0.003

0.60 
(0.51–0.69) 
0.02

0.58(0.49–0.67) 
0.10

Notes: AUC values represent the probability that the model correctly classifies 
patients; a value of 0.50 indicates no predictive power and a value of 1.0 in
dicates maximum predictive accuracy. Abbreviations: AUC, area under the 
ROC curve; ROC, receiver operating characteristics; CI, confidence interval; Ref., 
reference (used in the calculation of p-values); mod., modified.

Table 6 
Accuracy of surgical indication according to predictive models.

Predictive 
Model

Accuracy (CI) / 
p

Sensitivity (CI) / p Specificity (CI) / p

Anzuategui 70 % (61–78) / 
Ref.

64 % (54–74) / Ref. 85 % (68–95) / Ref.

Tomita 75 % (67–83) / 
0.37

83 % (74–90) / 
<0.001

54 % (36–72) / 
<0.001

Bauer (mod.) 74 % (66–82) / 
0.48

80 % (70–87) / 
0.005

59 % (41–76) / 
<0.001

Linden 56 % (47–65) / 
0.02

45 % (35–56) / 
0.002

88 % (72–97) / 
0.49

Sioutos 59 % (50–67) / 
0.07

61 % (51–71) / 
0.62

51 % (33–69) / 
<0.001

Notes: Surgical indication was assumed when each model classified the case as 
low or moderate risk, according to Table 1. A correct surgical indication was 
defined when postoperative survival exceeded 90 days; likewise, when the 
model indicated high risk and observed survival was less than 90 days, this was 
also considered a correct prediction. In this context, sensitivity reflects the 
model’s ability to identify individuals suitable for surgery, whereas specificity 
represents its ability to correctly identify frailty (high risk). Abbreviations: CI, 
confidence interval; Ref., reference (used in the calculation of p-values); mod., 
modified.
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American Spinal Injury Association (ASIA) Impairment Scale—featured 
in tools like Tokuhashi [40], Sioutos, Van der Linden, Katagiri, Spine 
Oncology Research Group (SORG) Nomogram [13], and machine lear
ning–based models such as SORG-MLA [41] and PathFx 3.0 [42], 
require careful evaluation. While these variables possess predictive 
value, their inclusion may conflict with one of the primary objectives of 
spinal surgery: to preserve or restore neurologic function. It is 

paradoxical that models might dissuade surgery precisely in patients 
who may benefit most from it.

Therefore, we propose that model selection should be guided by 
multiple considerations, including predictive accuracy (often greater 
with more variables), specificity (whether the model focuses on frailty, 
oncologic progression, or function), practicality (ease and cost of use), 
and clinical utility (whether it truly supports decision-making). In many 
cases, adopting more than one model may be a reasonable strategy: one 
that is simple, specific, and immediately applicable; another that is more 
complex and capable of providing precise, individualized predictions.

4.2. Illustrative case

The clinical case presented in Fig. 11 illustrates the practical appli
cation of three-predictor models in surgical decision-making for spinal 
metastasis. The patient was a 64-year-old male undergoing treatment for 
prostate cancer, referred to the Orthopedic Oncology service due to 
progressive motor weakness in the right lower limb, associated with 
severe lumbar pain. His medical history included chronic pulmonary 
disease secondary to long-term tobacco use, with a smoking load esti
mated at 50 pack-years.

Local staging revealed an expansive neoplastic lesion compressing 
the spinal canal at S1 and S2. Distant staging demonstrated metastatic 
spread to pelvic lymph nodes and multiple skeletal sites (pelvis, thoracic 
spine, lumbar spine, and ribs). The patient’s cardiac surgical risk was 
classified as low according to the Lee score [43] and anesthetic risk was 
ASA grade II.

In accordance with the NOMS framework [44] (Neurologic, 

Fig. 10. Calibration plots comparing predicted and observed event rates for the primary outcomes. Panel A shows calibration for 90-day postoperative survival, and 
Panel B depicts calibration for the incidence of complications.

Table 7 
Validated version of the Anzuategui frailty-based prediction model to support 
decision-making in cases of spinal metastases from solid tumors.

Predictors Present 
predictors

Risk 
category

Surgical strategy

Comorbidities1 0 Low Surgery
Tumor with non- 

slow progression2
1 Moderate Upfront surgery if urgent, or 

proceed with in-depth risk 
assessment.

Lymphocyte count 
< 1,000/µL3

2 or 3 High Conservative treatment

Notes: 1 Presence of at least one of the following comorbidities: diabetes mel
litus, chronic pulmonary disease, prior myocardial infarction, congestive heart 
failure, cardiac arrhythmia, pulmonary circulation disorder, peripheral vascular 
disease, cerebrovascular disease, dementia, renal failure, hepatic failure, con
nective tissue disease, coagulopathy, prior paralysis, peptic ulcer disease, ac
quired immunodeficiency syndrome. 2 Solid tumors with slow progression: 
hormone-dependent breast cancer, prostate cancer, thyroid cancer, and other 
rare histological types with slow progression. 3 Total preoperative peripheral 
blood lymphocyte count.

Fig. 11. Illustrative case. A 64-year-old male with metastatic prostate cancer presented with progressive right lower-limb weakness and severe low back pain. His 
medical history included chronic pulmonary disease related to long-term smoking (50 pack-years). Left: Preoperative MRI demonstrating an expansile epidural lesion 
at S1–S2 causing significant canal compromise. Center: Bone scintigraphy showing multiple osteoblastic metastases involving the right hemipelvis, ribs, sacrum, 
thoracic, and lumbar spine. Right: Postoperative lumbosacral radiograph following decompression and spinopelvic fixation for metastatic stabilization.
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Oncologic, Mechanical, and Systemic considerations), surgical treat
ment was indicated. Subsequently, all three-predictor models analyzed 
in this study were applied, resulting in the following classifications: 
Anzuategui (moderate risk, 1 point), Tomita (moderate risk, 5 points), 
Modified Bauer (moderate risk, 2 points), Van der Linden (moderate 
risk, 4 points), and Sioutos (moderate risk, 1 point).

Given the imminent risk of cauda equina syndrome and an accept
able surgical risk profile, the team opted for decompressive surgery with 
spinopelvic fixation.

Postoperatively, the patient experienced significant intraoperative 
bleeding and required a prolonged stay in the Intensive Care Unit, which 
was classified as a Grade 2 complication. Cauda equina syndrome was 
successfully avoided. The patient reported a substantial reduction in 
neuropathic pain and maintained functional motor strength until his 
death, which occurred 664 days after surgery.

4.3. Recommendations for using the Anzuategui model

The three-predictor model proposed by our group in 2019 [27] was 
designed to combine one predictor related to tumor progression (non- 
slow-growing tumor) with two indicators of frailty (presence of 
comorbidities and low lymphocyte count), resulting in a simple and 
easy-to-remember score ranging from 0 to 3 points (one point per 
negative predictor).

Here, we present its temporal external validation using a prospective 
cohort in which the predictive variables were systematically assessed 
and standardized, potentially reducing various sources of bias.

A major strength of the Anzuategui model is its simplicity, which 
does not require advanced imaging or oncologic restaging. We believe 
its ideal application lies in bedside screening, as proposed in the 
Vertebral Metastasis Surgery Decision Tree (Fig. 12). In urgent cases 
involving spinal cord compression, the seemingly straightforward de
cision to operate may actually require several days of deliberation, 
during which simple and intuitive tools can offer valuable support to the 
clinical team.

It is worth highlighting that the total peripheral blood lymphocyte 
count—a predictor included in our model and associated with malnu
trition, immunosuppression, and inflammation—was shown by our 
group to be a strong independent prognostic marker [45]. This variable 
is also employed in recent machine learning models such as SORG-MLA 
[41] and PathFx 3.0 [42]. We recommend that blood sampling be per
formed as close to surgery as possible, ideally within three days, due to 
expected variability in white blood cell differentials.

A clear limitation of the Anzuategui model lies in the heterogeneous 
and sometimes subjective assessment of frailty-related comorbidities. 

Clinical conditions often present with wide and progressive spectrums of 
severity. For example, newly diagnosed diabetes without end-organ 
damage is unlikely to significantly impact surgical outcomes. Howev
er, since the model is composed of only three predictors, the inclusion or 
exclusion of a single point may alter a patient's risk classification.

In our setting, chronic pulmonary disease is frequently under
diagnosed [46]. In many hospital environments, spirometry and 
specialist consultation are not always readily available. Therefore, we 
consider that a clinically assumed diagnosis of Chronic Obstructive 
Pulmonary Disease (COPD) is, in some cases, justified, and one point was 
accordingly assigned in the model. Accordingly, we recommend that 
experienced hospitalist clinicians participate in the evaluation of these 
patients and make informed clinical judgments regarding comorbidities. 
Only those considered clinically significant, such as diabetes and COPD 
[47,48] (see suggested list in Table 7) should contribute to the model 
score. Common conditions such as grade I or II obesity, well-controlled 
hypertension, mild peripheral venous insufficiency, hypothyroidism, 
dyslipidemia, and prediabetes are generally not considered significant 
comorbidities within this model.

It is also crucial to reflect on the histologic types responsible for 
spinal metastases and their use in predictive modeling. Understanding 
tumor progression requires in-depth knowledge of tumor biology, which 
continues to evolve—particularly with advancements in genomic, mo
lecular, and hormonal biomarkers [49]. For instance, in 2001, Tomita 
et al. [21] did not have access to molecular tools necessary to accurately 
classify breast cancer subtypes. In contrast, Katagiri et al. [50] in 2014, 
incorporated molecular markers for lung cancer and considered hor
monal therapy response in both breast and prostate cancers.

Rather than adopting rigid histology-based lists when developing 
predictive models, we advocate for evaluating tumors based on their 
estimated progression rate, considering available diagnostic 
tools—histopathologic, molecular, genetic, hormonal, or otherwise. 
When using the Anzuategui model, we recommend thoughtful consid
eration when classifying tumor aggressiveness, avoiding overreliance on 
Table 7 and encouraging individualized assessment whenever possible, 
ideally involving multidisciplinary input from pathologists and medical 
oncologists.

5. Future directions

Future studies should aim to validate the Anzuategui model in non- 
surgical or demographically diverse populations to assess its applica
bility in different clinical and epidemiological settings. Additionally, 
incorporating new evidence into the model may enhance its perfor
mance and clinical utility as a decision-support tool.

To ensure appropriate application of the validated model, future 
researchers should focus on accurate identification of comorbidities and 
timely collection of laboratory data, particularly lymphocyte counts 
close to the time of surgery. Therefore, we recommend that future val
idations be conducted through prospective designs, as retrospective 
studies frequently fail to control for key variables.

6. Limitations

This study has several limitations. The lack of complete blinding may 
have introduced selection, performance, measurement, and confirma
tion biases. Additionally, the generalizability of the results is limited, as 
the study was conducted in a single institution with a characteristically 
heterogeneous sample. Clinical interpretation of complex cases is 
inherently subject to judgment errors. Furthermore, differences in access 
to therapeutic resources may lead to variable surgical outcomes for 
spinal metastases. Cancer incidence and socioeconomic factors [51,52] 
also vary across countries and may influence the applicability of these 
findings. A further limitation is that surgical approaches vary substan
tially across institutions, as highlighted in recent comparative studies 
[53,54], and the technique predominantly used in our center may not 

Fig. 12. Vertebral Metastasis Surgery Decision Tree. Decision-making follows 
the NOMS framework, which integrates neurological (N), oncological (O), 
mechanical (M), and systemic (S) considerations. Rectangular boxes represent 
decision nodes, ovals indicate chance nodes, and triangles denote termi
nal outcomes.

P.R. Anzuategui et al.                                                                                                                                                                                                                          Journal of Bone Oncology 57 (2026) 100739 

10 



reflect the procedures most commonly performed worldwide. Although 
our cohort is sizeable, the number of complications was not large 
enough to support more granular inferences about these events. More
over, many complications in oncologic patients may arise independently 
of surgery itself, which requires caution when interpreting associations 
and evaluating the predictive performance of any model.

7. Conclusions

The Anzuategui model demonstrated acceptable external perfor
mance, with greater validity for predicting 90-day survival than for 
postoperative complications. Its simplicity and frailty-centered structure 
make it a practical bedside tool, particularly in urgent or resource- 
limited settings. Integrating this approach with established prognostic 
models may support more balanced decision-making across diverse 
clinical scenarios.
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